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A dual fluorescent charge transfer fluoroionophore (1) with its

ionophore incorporated in the electron acceptor was developed

and was found to show a highly selective fluorescent response

to Cu2+ with a dramatic enhancement in its CT emission.

Because of its biological and environmental importance, detection

and monitoring of Cu2+, especially via methods that allow selective

and sensitive assays, are highly demanding. Fluorescence signaling

is one of the first choices due to its high detection sensitivity and

intrinsic operation simplicity. Designing fluoroionophores for

Cu2+ has drawn much recent attention.1 These fluoroionophores

consist in principle of a metal ionophore and a signaling

fluorophore that are either conjugated or connected by a flexible

spacer.2 As a transition metal ion known for its efficient

fluorescence quenching character, detection of Cu2+ by fluoro-

ionophores hitherto reported operates mostly in fluorescence

quenching mode under an electron or energy transfer mecha-

nism.3,4 Due to sensitivity reasons, fluoroionophores showing

fluorescence enhancement as a result of metal-ion binding are to be

favored over those exhibiting fluorescence quenching. A number

of fluoroionophores have been reported for Cu2+ that show

fluorescence enhancement.5–7 Among those reported, Cu2+ bind-

ing resulting in the inhibition of photo-induced electron transfer

(PET) in the fluoroionophores has been an important mechanism,6

with the metal ionophore located in the electron donor. Obviously,

the metal binding selectivity is subject to the choice of a

sophisticated ionophore that is selective for this metal ion.

Intramolecular charge transfer (CT) fluoroionophores for Cu2+

were also reported that showed an enhancement in the short-

wavelength emission of the locally excited state (LE state), at the

expense of the long-wavelength CT emission.7 This is in principle

similar to PET inhibition, with the metal ionophore incorporated

in both the electron donor7a,c and acceptor.7b Cu2+ fluoroiono-

phores showing enhanced excimer emission were recently

reported.8 Herein is described a new CT dual fluorescent

fluoroionophore 1 (Scheme 1)9 that shows a highly selective and

sensitive fluorescent response toward Cu2+.

1 was designed on the basis of the dual fluorescent CT

fluorophore 4-(N,N-dimethylamino)benzamide10 whose electron

acceptor is derived into 2-methoxybenzaldehyde hydrazone, the

metal ionophore.11 2-Hydroxybenzaldehyde acylhydrazones are

known as good ligands for transition metal ions.11 The 2-OH

group in the salicylaldehyde hydrazone moiety, however, may

open an ESIPT (excited-state intramolecular proton transfer)

channel which would decrease the fluorescence quantum yield and

complicate the photophysics.12 The 2-OCH3 group instead of

2-OH was therefore chosen in 1, in which the N9-acylhydrazone

moiety as metal ionophore is located in the electron acceptor.

The absorption spectrum of 1 in ACN exhibits three bands

peaked at 227, 272, and 334 nm, respectively (Fig. 1a). In the

presence of Cu2+, the band at 334 nm was attenuated while a new

peak appeared at longer wavelength (388 nm). Two clear isosbestic

points at 363 and 293nm were observed during the spectral

titration, indicating the formation of a well-defined 1–Cu2+

complex. Similar spectral variations were observed with the other

tested transition metal ions such as Zn2+, Hg2+ and Pb2+ (Fig. S1

in ESI{), which, after non-linear fitting assuming a 1 : 1

stoichiometry, afforded binding constants of comparable value
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Scheme 1 Structure of 1 and its OCH3-free control molecule 2.

Fig. 1 Absorption (a) and fluorescence (b) spectra of 1 (2.0 6 1025 M)

in ACN in the presence of increasing concentration of Cu2+ (0–6.0 6
1025 M in (a) and 0–5.0 6 1025 M in (b)). The excitation wavelength for

acquiring fluorescence spectra was 293 nm, an isosbestic wavelength

observed in the absorption spectral titration. Cu2+ and other metal ions

were used as their perchlorate salts.
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at 104 M21 orders of magnitude (Table S1 in ESI{). These

observations indicate that Cu2+, Zn2+, Hg2+ and Pb2+ bind to a

similar extent to 1 in the ground state.

1 in ACN emits dual fluorescence, with a total fluorescence

quantum yield W of 0.0082 (Fig. 1b). This is indicative of the

occurrence of the excited-state CT known for the parent CT

fluorophore 4-(N,N-dimethylamino)benzamide.10 The short-

wavelength emission at ca. 350 nm assigned to the LE state of 1

showed very weak dependence on solvent polarity, whereas a

continuous red-shift was observed in the long-wavelength emission

from 410 nm in diethyl ether to 525 nm in ACN of increasing

polarity, confirming the CT nature of its emissive state. A dipole

moment of 24 D was deduced from the solvatochromic data for

the CT state of 1 following a reported procedure,13 see details and

Fig. S2 in ESI.{
The response of the CT dual fluorescence of 1 toward a variety

of metal ions was examined first in ACN. Upon addition of Li+,

Na+, K+, Mg2+, Ca2+, Ba2+, Al3+, Fe3+, Co2+, Ni2+, Cu2+, Ag+,

Zn2+, Cd2+, Hg2+, and Pb2+ to the ACN solution of 1, a

prominent fluorescence enhancement was only observed for Cu2+

(30 fold) with a substantial blue shift in its CT emission from

525 nm to 460 nm, Fig. 1b. Other transition metal ions, as

expected, quenched the fluorescence to differing extents while the

CT emission of 1 blue shifted too, whereas alkali and alkaline earth

metal ions had hardly any effect on the emission of 1 (see Fig. S3 in

the ESI{ and Fig. 2). Different from the previously reported CT

fluoroionophores for Cu2+ with which the LE emission was greatly

enhanced upon Cu2+ binding whereas the CT emission was

quenched,7 1 showed only minor changes in its LE emission in

both the position and intensity, while its CT emission was

dramatically enhanced and blue-shifted. The total fluorescence of 1

was enhanced 30 fold when 2.5 equivalent of Cu2+ was present and

further increase in Cu2+ concentration led to slight fluorescence

quenching (Fig. S3 in ESI{).

Preliminary examination of the response of its dual fluorescence

toward Cu2+ in ACN–H2O buffer solutions promised practical

applications of 1 as a highly selective and sensitive fluoroionophore

for Cu2+ (Fig. 2). Compared to that in pure ACN, the dual

fluorescence of 1 was quenched by 75% with a total W of 0.002 in

ACN–H2O (9 : 1, v/v). However, an unexpectedly dramatic

enhancement of the CT emission was observed when Cu2+ was

added to the solution of 1 in ACN–H2O (9 : 1, v/v) buffered by

0.005M tris-HCl (pH = 7.2). A substantial blue shift was also

observed in the long-wavelength CT emission, now from 530 nm

to 482 nm. The fluorescence of 1 was enhanced 170 fold when

2.5 equivalents of Cu2+ were introduced (Fig. 2), together with a

substantial increase in the CT to LE intensity ratio (Fig. S4 in

ESI{). The fluorescence enhancement factor decreased with

increasing water content in ACN–H2O, but could still be more

than 40 fold when the water content was 90% by volume (Table S2

in ESI{). With increasing water content in ACN, a continuous red-

shift from 460 nm to 526 nm was observed in the long-wavelength

emission of the 1–Cu2+ complex (Table S2 in ESI{), establishing its

CT nature of the emissive state. The dipole moment of the CT

state of the 1–Cu2+ complex was similarly deduced as 23 D by

assuming an unchanged ground-state dipole moment of the

fluoroionophore upon binding to Cu2+, see details and Fig. S5

in ESI.{
The total fluorescence intensity of 1 in aqueous ACN solution

was found to be independent of the aqueous phase pH over 3–12

(Fig. S6 in ESI{), all of the experiments were hence carried out in

the 9 : 1 (v/v) mixture of ACN and 0.005 M tris-HCl (pH = 7.2).

The fluorescence of 1 was only slightly altered by Li+, Na+, K+,

Mg2+, Ca2+, Ba2+, Al3+, Co2+, Ni2+, Zn2+, Cd2+, Hg2+, and Pb2+,

whereas Fe3+ at high concentration led to substantial quenching.

Meanwhile, the fluorescence of 1 in the presence of 2 equivalents of

Cu2+ was hardly changed by the co-existence of 10 equivalents of

other metal ions except Fe3+; in the latter case half of the

fluorescence of 1–Cu2+ was quenched, Fig. 2 inset. These results

indicated that 1 was highly selective for Cu2+ via substantial

enhancements in its CT fluorescence. Preliminary data indicated

that 1 can be employed to detect Cu2+ down to 1.8 6 1028 M

when 1 was used at 2.5 6 1026 M.

Absorption titration and ESI-MS data (Table S1 and Fig. S7 in

ESI{) indicated that 1 bound with the tested transition metal ions

such as Cu2+, Pb2+ and Zn2+ etc. in a 1 : 1 stoichiometry.

According to the reported coordination mode of 2-hydroxyben-

zaldehyde acylhydrazones with transition metals including Cu2+,11c

1 was assumed to chelate Cu2+ in a tridentate mode via its

carbonyl O, imino N and 2-methoxy O atoms. This tridentate

binding mode was supported by IR data. In the IR spectrum of 1

(Fig. S8 in ESI{) the peaks at 1624, 1609 and 1253 cm21 ascribed

to the CLO, CLN and C–O stretching, respectively, were found,

upon Cu2+ binding, to shift to lower wavenumbers of 1609, 1570

and 1245 cm21 respectively.14

Several factors can be listed for rationalizing the observed

emission enhancement. (i) The low fluorescence quantum yield of 1

in ACN in the absence of Cu2+ (0.0082) might be attributed to

radiationless channels from the np* state.10a Indeed, we observed

in the absorption spectrum of 1 in cyclohexane a weak shoulder at

369 nm due to the np* transition.15 In the presence of Cu2+ that

coordinates with the lone pair of the carbonyl oxygen, the energy

of the np* state would be raised so that the pp* state becomes the

lowest excited state, leading to a substantial increase in the

fluorescence quantum yield.7b,16 (ii) The blue shifted CT emission

Fig. 2 Plot of the fluorescence enhancement (I/I0 or W/W0) versus

concentrations of Cu2+ and other metal ions in a mixture of ACN and tris-

HCl (0.005 M, pH = 7.2) aqueous buffer solution (9 : 1, v/v). Inset shows

the fluorescence spectra of 1 (2.0 6 1025 M) in the presence of 2 equiv of

Cu2+ and 2 equiv of Cu2+ plus 10 equiv of other metal ions, respectively.
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of 1 in the presence of Cu2+ actually pointed to an enlarged energy

gap between the emissive CT state and its corresponding ground

state and hence a decreased radiationless rate constant17 and an

increased quantum yield. (iii) Cu2+ binding to 1 could also induce a

conformation restriction, resulting in increased fluorescence

quantum yield18 and preventing Cu2+ from quenching the

fluorescence of the fluorophore. In supporting this assignment, it

was observed that the OCH3-free control molecule of 1, 2

(Scheme 1) that chelates Cu2+ in a bidentate manner, showed only

10 or 70 fold fluorescence enhancement when fully complexed with

Cu2+ in ACN or ACN–H2O (9 : 1, v/v) solution, respectively

(Fig. S9 in ESI{). It is of significance to indicate that, although all

the tested transition metal ions such as Cu2+, Pb2+ and Hg2+ bind

to a similar extent to 1 in the ground state and the afore-listed

factors should exist with all of them, only Cu2+ dramatically

enhances the CT emission of 1. This means that the coordination

of 1 with Cu2+ in either the ground or the excited state is not

exactly the same as that of 1 with other metal ions, although the

detailed mechanism for this highly selective fluorescent response of

1 toward Cu2+ remains to be clarified. It was found that the blue-

shifted CT emission in ACN of the 1–Cu2+ complex appeared

at more or less the same position as that of N9-isopropyl 4-

(N,N-dimethylamino)benzamide at ca. 460 nm (Fig. S10 in ESI{).

This suggests that the electron acceptor in 1 becomes smaller upon

Cu2+ binding and might be a useful structural hint for clarifying

the high selectivity observed for Cu2+. We are currently working

on a series of 1 derivatives with 4-substituents other than the

electron donating N(CH3)2 in which the excited-state CT channel

in 1 is removed.

In summary, we reported a simple yet highly selective and

sensitive CT fluoroionophore for Cu2+, in which the metal

ionophore was incorporated in the electron acceptor of the CT

fluorophore. A blue shift and dramatic enhancement in the CT

fluorescence of 1 in ACN and aqueous ACN solutions were

observed in the presence of Cu2+, a transition metal ion known as

an efficient fluorescence quencher. A noteworthy character of this

CT fluoroionophore is that its highly selective fluorescent response

toward Cu2+ is not due to the binding preference in the ground

state. As both the electron donor (4-N(CH3)2) and the ionophore

in the electron acceptor in 1 can be structurally modified or

replaced, the results reported here provide a new strategy for

constructing turn-on CT fluorophores for transition metal ions.
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